Search results for "Terahertz radiation"
showing 10 items of 117 documents
Devices based on semiconductor nanowires
2009
Recently, nanoelectromechanical systems (NEMS) have attracted much attention due to their unique properties and possible applications that differ greatly from those of microelectromechanical systems. NEMS operating frequencies may achieve giga- and terahertz levels and their power consumption and heat capacity is extremely low. Moreover, integration levels may reach 1012 devices per cm−2. In this review, we present techniques for integrating semiconductor materials in NEMS. In particular, we examine fabrication, structure, properties and potential applications of two main classes of NEMS, namely, resonators and switches.
Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields.
2021
We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the stat…
Art Painting Testing with Terahertz Pulse and Frequency Modulated Continuous Wave
2017
Paintings of individuals or collections undergo aging over time. The work of art restorers consists of repairing these defects using techniques that respect the history of the work. Ultraviolet, infrared and visible light and X-rays are well known techniques for analyzing these defects, but Terahertz is also increasingly used. Several works have shown that it is possible to detect hidden layers and various defects via terahertz pulses. In a previous work, we have shown that it is possible to use terahertz radiation to detect defects in the context of a restoration of a painting with a speed increase compared to time domain imaging.
Asymmetric transmission of terahertz radiation through a double grating.
2013
We report on experimental evidence of unidirectional transmission of terahertz waves through a pair of metallic gratings with different periods. The gratings are optimized for a broadband transmission in one direction, accompanied with a high extinction rate in the opposite direction. In contrast to previous studies, we show that the zero-order nonreciprocity cannot be achieved. Nonetheless, we confirm that the structure can be used successfully as an asymmetric filter.
High Cyclotron Harmonics Excitation in Multi-beam Terahertz Range Gyrotrons
2019
The paper presents recent results on the multi-beam gyrotrons operating at cyclotron harmonics in terahertz frequency range. The theoretical and experimental investigation of second harmonic 0.78 THz gyrotron includes comparison of generating and absorbing beam schemes, research on the effect of velocity spread and mode competition process, along with development of third harmonic 1.2 THz tube based on verified numerical codes and latest experimental results.
All-fibered high-quality 1.5–2 THz femtosecond pulse sources
2009
Generation of high-quality ultra-high repetition rate optical pulse trains around 1.55µm has become increasingly interesting for many scientific applications such as optical sampling, ultra-high capacity transmission systems, component testing or nonlinear phenomena studies. Unfortunately, the current bandwidth limitations of optoelectronic devices do not enable the direct generation of pulses with repetition rate higher than 80GHz and a temporal width below a few ps.
Invited Article: Ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit
2018
We present a novel class of CMOS-compatible devices aimed to perform the solid-state-biased coherent detection of ultrashort terahertz pulses, i.e., featuring a gap-free bandwidth at least two decades-wide. Such a structure relies on a 1-µm-wide slit aperture located between two parallel aluminum pads, embedded in a 1-µm-thick layer of silicon nitride, and deposited on a quartz substrate. We show that this device can detect ultra-broadband terahertz pulses by employing unprecedented low optical probe energies of only a few tens of nanojoules. This is due to the more than one order of magnitude higher nonlinear coefficient of silicon nitride with respect to silica, the nonlinear material emp…
Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber
1999
International audience; We present a set of experimental observations that demonstrate the generation of vector trains of dark-soliton pulses in the orthogonal axes of a highly birefringent optical fiber. We generated dark-soliton trains with terahertz repetition rate in the normal group-velocity dispersion regime by inducing a polarization modulational instability by mixing two intense, orthogonal continuous laser beams. Numerical solutions of the propagation equations were used to optimize the emission of vector dark pulses at the fiber output.
Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice
2015
In a superlattice placed in crossed electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the miniband and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.
Six-dimensional measurements of trains of high brightness electron bunches
2015
Trains of ultrashort electron pulses with THz repetition rate, so-called comblike beams, are assuming an ever growing interest in plasma-based acceleration. In particle-driven plasma wakefield acceleration (PWFA), a train of driver bunches with separation of the order of plasma wavelength, i.e., 300 μm, resonantly excites a plasma wake, which accelerates a trailing witness bunch, injected at the accelerating phase. Comblike beams have great potentialities in different fields of applications. In particular, radiation sources, such as free-electron lasers and THz radiation, take advantage from the possibility to tailor electron beams modulated both in time and energy, to customize emission ba…